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Biologists agree that the ancestor of mito-
chondria was an a-proteobacterium. But there
is no consensus as to what constitutes an
a-proteobacterial gene. Is it a gene found in all
or several a-proteobacteria, or in only one?
Here, we examine the proportion of a-proteo-
bacterial genes in a-proteobacterial genomes by
means of sequence comparisons. We find that
each a-proteobacterium harbours a particular
collection of genes and that, depending upon
the lineage examined, between 97 and 33% are
a-proteobacterial by the nearest-neighbour
criterion. Our findings bear upon attempts to
reconstruct the mitochondrial ancestor and upon
inferences concerning the collection of genes that
the mitochondrial ancestor possessed at the time
that it became an endosymbiont.
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1. INTRODUCTION
There is consensus among biologists that mitochondria
descend from free-living prokaryotes and that the
organelle arose only once during evolution (Gray et al.
1999; Dolezal et al. 2006). There is considerably less
agreement concerning the biochemical capabilities and
phylogenetic affinity of the mitochondrial ancestor.
Various eubacterial groups have been proposed as the
ancestor of mitochondria. Even before the time of
molecular phylogenies, interest in this topic has focused
upon the purple non-sulphur bacteria ( John & Whatley
1975), later renamed as a-proteobacteria (Stackebrandt
et al. 1988).

The conventional approach to identify the mito-
chondrial ancestor is founded in the comparison of
mitochondrially encoded genes with those in the
genomes of free-living prokaryotes. By this means,
early analyses of 16S rRNA suggested Agrobacterium
tumefaciens to be the closest relative of the mitochon-
drion (Yang et al. 1985). More recent studies
have attributed the mitochondrial ancestor to the
Rickettsiales order, which mostly contains parasitic
species with highly reduced genomes (Lang et al.
1999; Emelyanov 2003). Other studies have pointed
specifically to Rickettsia prowazekii as the ancestral
genome (Andersson et al. 1998), or a common
ancestor of Rickettsia and Wolbachia (Wu et al. 2004),
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while others still have implicated larger genomes, free-
living representatives (Esser et al. 2004). A different
approach to the issue was taken by Gabaldon &
Huynen (2003), who inferred the kinds of biochemical
pathways that the mitochondrion possessed, without
addressing the nearest neighbour of the organelle
among free-living groups. Yet, a different approach to
the issue entails the study of nuclear-encoded proteins
shared by mitochondria and hydrogenosomes—the
ATP- and H2-producing mitochondria of anaerobic
eukaryotes (Müller 2003)—and inferences about
the physiology of their free-living ancestor (van der
Giezen & Tovar 2005; Embley & Martin 2006).

The nearest neighbour of mitochondria among
free-living a-proteobacteria is still unknown (Lang
et al. 1999; Esser et al. 2004). At the same time, gene
content in bacterial genomes is variable over time
owing to inheritance, mutation, gene loss and lateral
gene transfer (LGT) events (Lawrence & Ochman
1998; Martin 1999; Doolittle 2004; Kunin et al.
2005; Lerat et al. 2005). Here, we examine the
phylogenetic affinities of the 47 143 proteins encoded
among 18 a-proteobacterial genomes by means of
nearest-neighbour comparisons.
2. MATERIAL AND METHODS
(a) Data

Prokaryotic and mitochondrial genomes were downloaded from the
NCBI website (http://www.ncbi.nlm.nih.gov/; versions of April
2005; table S1 in electronic supplementary material). All 288
prokaryotic genomes were formatted into a single Blast (Altschul
et al. 1990) database. Eighteen a-proteobacterial and six mito-
chondrial genomes were used as queries, including only proteins
longer than 50 amino acids.

(b) Nearest-neighbour inference

The nearest neighbour of each protein was inferred by a best Blast
hit (BBH) approach and a phylogenetic tree approach using the
neighbour-joining (Saitou & Nei 1987) and maximum-likelihood
methods. Neither approach is infallible (Koski & Golding 2001;
Penny et al. 2001); we used both approaches for comparison.

For BBH analysis, each protein in each query genome was blasted
against the 288 genome database. The nearest neighbour was defined
as the BBH above an E-value of 10K20 that is neither the query
protein nor stems from the same genus as the query protein. The
taxonomic group of the nearest neighbours was specified as the
phylum according to the NCBI taxonomy (http://www.ncbi.nlm.nih.
gov/Taxonomy/), or as the class in the case of proteobacteria.

In the NJ approach, the BBHs from each genus were selected.
These were aligned with CLUSTALW (Thompson et al. 1994), protein
distances were calculated with PROTDIST (Felsenstein 2005) using
the JTT matrix, and used to reconstruct an NJ tree with NEIGHBOUR

(Felsenstein 2005) using 100 bootstrap replicates. Maximum-
likelihood trees were reconstructed using FASTML (Pupko et al.
2000). The nearest neighbour was defined as the operational
taxonomic unit with smallest sum of branch lengths to the query
protein that appears in more than or equal to 90% of the replicates.
3. RESULTS
If every gene contained within an a-proteobacterial
genome were of an a-proteobacterial origin (i.e. most
closely related to homologues in other a-proteo-
bacteria), then every nearest neighbour of every gene in
each a-proteobacterial genome would be found in
another a-proteobacterium. Our results (figure 1)
indicate that a-proteobacterial genomes are mosaic to
varying degrees.

The highest proportion of a-proteobacterial BBH
nearest neighbours (92%) was found in Sinorhizobium
meliloti, while the lowest proportion (64%) was found in
Magnetospirillum magnetotacticum. An even lower pro-
portion of a-proteobacterial BBH nearest neighbours
This journal is q 2006 The Royal Society
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Figure 1. Distribution across taxonomic groups for (a) a-proteobacterial nearest neighbours by BBH, (b) prokaryotic genes,
(c) a-proteobacterial nearest neighbours by NJ and (d ) mitochondrial nearest neighbours by BBH. The number of query
proteins used for the analysis is shown to the left of the species name ( y-axis).
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(33%) was detected in Magnetococcus sp., which is

currently classified as an unclassified proteobacteria,

but shows clear resemblance to a-proteobacteria (see

figure 2). On average, 77G13% of the proteins in

a-proteobacterial genomes, sampled here, had their

nearest neighbour in another a-proteobacterium.

The remainder of the BBH nearest neighbours of

a-proteobacterial genes was found in other proteobac-

terial classes (b, 5G3%; d, 1G3%; 3, 0.2G0.2%; and

g, 9G5%) or outside the proteobacterial phylum

(7G4%). The most frequent non-proteobacterial

nearest neighbours are actinobacterial, cyanobacterial

and firmicute genes (figure 1a; table S2 in electronic

supplementary material). In all a-proteobacterial

genomes, these frequencies deviate significantly

( p!0.05, using c2-test with Bonferroni correction)

from the taxonomic distribution of the prokaryotic

genes in our data (figure 1b), hence our results are

not random.

The distribution of NJ nearest neighbours of

a-proteobacterial genes is similar to the results of the

BBH method (figure 1c). The majority of the genes

(87G13%) have an a-proteobacterial nearest neigh-

bour, while other frequent nearest neighbours are

g-proteobacterial and actinobacterial genes (table S3

of electronic supplementary material).
Biol. Lett. (2007)
The BBH nearest-neighbour analysis of the mito-

chondrial genes results in a phyletic distribution that

is similar to that of the a-proteobacterial genes

(figure 1d ). The majority of the nearest neighbours

are a-proteobacterial (82G7%), and additional

frequent taxa are g-proteobacteria and firmicutes

(table S2 of electronic supplementary material).

The vast majority (93G4%) of the BBH nearest

neighbours among proteins encoded within the 18

a-proteobacterial genomes sampled here reside within

genomes of the proteobacterial phylum (figure 1).

The a-proteobacterial genomes sampled encode

many open reading frames, sequences that have no

known homologues (17 953 in all a-proteobacteria),

and whose history cannot presently be addressed by

sequence comparisons. In the present study, the

BBH approach detected, on average, no nearest

neighbour for 27G10% of the proteins in each

a-proteobacterial genome (figure S1 in electronic

supplementary material). Our results were found to

be independent of the tree size or the sampled species

(figures S2–S4 in electronic supplementary material).

Using the ML reconstruction, the proportion of

a-proteobacterial nearest neighbours was lower by

approximately 10% (figure S5 in electronic supple-

mentary material).

http://rsbl.royalsocietypublishing.org/
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4. DISCUSSION
On the basis of sequence similarity to a-proteobacterial
homologues, it has been estimated that 630 eukaryotic
genes trace to a-proteobacteria (Gabaldon & Huynen

2003). But there are thousands of eukaryotic nuclear
genes that are clearly eubacterial, but not specifically

a-proteobacterial, in terms of their patterns of sequence
similarity (Esser et al. 2004; Rivera & Lake 2004;
Embley & Martin 2006). Finding a eukaryotic gene

that branches with a group other than a-proteobacteria
is often taken as evidence for an origin from that
group (for example, Baughn & Malamy 2002), the

methodological problems of deep phylogenetic trees
notwithstanding (Susko et al. 2006). But if we let go of
the static prokaryotic chromosome model and assume a
Biol. Lett. (2007)
fluid chromosome model for prokaryotes, then the

expected phylogeny for a gene acquired
from the mitochondrion would be common ancestry
for all eukaryotes, but not necessarily tracing to

a-proteobacteria, because the ancestor of mito-
chondria possessed an as yet unknown collection of

genes. A previous investigation of genome evolution
in a-proteobacteria considered the genome size and
functional classes (Boussau et al. 2004), but not

sequence similarities. Hence, we wished to know
how many of the a-proteobacterial genes pass the
test of being a-proteobacterial by the nearest-

neighbour criterion.
The answer, based upon the current sample,

ranges from approximately 97% for Sinorhizobium to

http://rsbl.royalsocietypublishing.org/
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approximately 33% for Magnetococcus sp. The mito-

chondrial genomes studied (figure 1d ) did not differ
in terms of the nearest-neighbour composition from

a-proteobacterial genomes.
Prokaryotic gene content is shaped not only by

inheritance, but also by gene loss and LGT (Doolittle
2004; Kunin et al. 2005; Lerat et al. 2005). But this

realization is only slowly being assimilated into thinking
on the mitochondrial origin and eukaryotic gene

origins (Esser et al. 2004). Our findings indicate
that modern a-proteobacterial genomes represent tran-
sient collections of genes that stem from diverse

sources. By inference, the ancestor of mitochondria had
a mosaic genome as well; hence, a criterion that is often

used to infer whether a eukaryotic nuclear gene of
eubacterial origin stems from the mitochondrion or

not—namely branching with an a-proteobacterial gene
(Kurland & Andersson 2000)—is probably too strict,

because it tacitly assumes a static model of bacterial
chromosome evolution in which LGT and gene loss do

not exist, either now or in the past. Incorporating a
fluid bacterial chromosome model into endosymbiotic

theory generates the prediction that nuclear genes
acquired by eukaryotes from the ancestor of mito-

chondria should tend to reflect a single common
eubacterial ancestry—provided that molecular phylo-

geny can accurately recover events that occurred
more than 1.5 billion years ago (Embley & Martin

2006)—but that they should not necessarily belong to
the known set of contemporary a-proteobacterial genes,

regardless of how one were to define it.
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